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Distributional Properties of the Three-Dimensional 
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This paper gives distributional properties of geometrical characteristics of the 
Delaunay tessellation generated by a stationary Poisson point process in R ~. 
The considerations are based on a well-known formula given by Miles which 
describes the size and shape of the "typical" three-dimensional Poisson 
Delaunay cell. The results are the probability density functions for its volume, 
the area, and the perimeter of one of its faces, the angle spanned in a face by 
two of its edges, and the length of an edge. These probability density functions 
are given in integral form. Formulas for higher moments of these characteristics 
are given explicitly. 

KEY WORDS:  Delaunay tessellation; Poisson Delaunay cell; Poisson point 
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1. I N T R O D U C T I O N  

The De launay  tessel la t ion is an i m p o r t a n t  mode l  for the a p p r o x i m a t i o n  of  
real s t ructures  in a wide field of  research. It is a space-fi l l ing subdivis ion of  
the d -d imens iona l  Eucl idean  space R a into d -d imens iona l  simplices,  whose 
vertices are  the poin ts  of  a po in t  process.  In general ,  any  ( d +  1)-tuple of  
points  of  a po in t  process  generates  a d -d imens iona l  ball.  A cell of  the 
De launay  tessel lat ion is genera ted  by such a ( d +  1 )-tuple, if and  only if the 
d-d imens iona l  b~ll does  no t  con ta in  ano the r  po in t  of  the po in t  process.  
The D e l a u n a y  cells are  t r iangles in the two-d imens iona l  ( d = 2 )  and 
t e t rahedrons  in the th ree -d imens iona l  ( d = 3 )  case. These cases are 
impor t an t  for app l i ca t ions  of  this mode l  in c rys ta l lograph ic  studies, for 
app rox ima t ions  in the c o n t i n u u m  and q u a n t u m  field theory,  for studies of  the 
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mechanical response of heterogeneous materials, and in many other fields. 
Much of this work is summarized in Okabe et  al., ~1~ Kumar and Kurtz, t21 
and references therein. The results are obtained mainly by simulation. 

Under the assumption that the generating point process of the 
Delaunay tessellation is a Poisson point process, a theoretical investigation 
is possible by methods of integral geometry t3~ or by the theory of Palm 
measuresJ 4~ The distributional properties of the size and shape of a Poisson 
Delaunay cell for an arbitrary dimension are completely described by 
Miles, t3~ formula (76). This result is used as a fundamental relation for the 
determination of the geometrical characteristics for the three-dimensional 
Deleunay tessellation generated by a stationary Poisson process. 

Formula (76) in Miles ~3~ (in the following called Miles' formula) has 
been often used for the two-dimensional case (e.g., refs. 5-8). In contrast, 
Miles' formula has rarely been used for the three-dimensional Poisson 
Delaunay cell, because the number of integrations increases up to nine. 
Simulation studies of geometrical characteristics are made in Kumar and 
Kurtz ~2~ for the three-dimensional case. 

The present paper gives analytical results for geometrical charac- 
teristics of the three-dimensional Poisson Delaunay cell. The considerations 
are based on a modification of Miles' formula given by Muche, c9~ which 
has a more suitable form for an analytical treatment. 

Probability density functions are given for the following characteristics 
of the three-dimensional Poisson Delaunay cell: 

- -  the cell volume and the equivalent radius (radius of a ball of equiv- 
alent volume) 

- -  the area of a face 

- -  the perimeter of a face 

- -  the length of an edge 

- -  an angle in a face spanned by two of its edges 

In general, such probability density functions cannot be given explicitly, 
but in the form of multiple integrals. The graphs of these functions are 
obtained by numerical integration. Expressions are given for the moments 
of these characteristics explicitly. A short summary is given for the one- 
and two-dimensional cases as well. 

2. MILES'  F O R M U L A  

Let ~) denote the Delaunay tessellation with respect to a stationary 
Poisson point process �9 in Ea with intensity 2. Let D denote the "typical" 
cell of Z~. The work "typical" is used as in Stoyan et al., ~l~ p. I10. This 



3D Poisson Delaunay Cell 149 

"typical" cell D of ~ is equivalent to the set of all inner points of a 
d-dimensional simplex spanned by d +  1 points zt ,  z2 ..... z a and za+ 1 ~cI,  
with the property 

II-', II = Itz2 II . . . . .  IIz,/ll = I I - a +  t I[ = A 

This means that these d +  1 points are placed on the boundary of a 
d-dimensional ball b(o ,  A )  of radius ,3 centered in the origin o and there are 
no points of r closer to o. 

Let Ui denote the projection of the point z i ( i =  1, 2 ..... d +  1) onto the 
unit sphere ab(o, 1 ), where z; = Ui./I, 0 ~< ,J < m. Thus the size and shape of 
the "typical" Poisson Delaunay cell are completely characterized by the 
radius/I  of the ball and the d +  1 unit vectors corresponding to the vertices 
of D. The corresponding probability density function is given by Miles' 
formula [ref. 3, formula (76)] 

f J. t,~. ~..... t~,~ + ~ ( 6, u i, u 2 ..... u,; + t ) = x,;6';" - i exp( - 2co,;6";) v,;( u~, u2 ..... u s  + i ) 

Here, r  denotes the volume of the unit d-ball, 
v a ( u t , u 2  ..... ua+l) is the (in general positive) d-dimensional Lebesgue 
measure of the simplex spanned by d +  1 unit vectors Ul,  u2 ..... ua+~,  and 
x,~ is a coefficient depending on d. Let O be a random variable defined for 
D which is invariant under Euclidean motions (for example, the 
d-dimensional Lebesgue measure of D or the length of one of its edges). 
Then the distribution function F,9(O) is given by 

d intcgralio~s 

Fo(0) = 1r j~- fm , , o . , , " "  f,~1,,,,, l, d" ' - -  l e x p (  - 2(o,,d 'l) 

~9 < 0  

x va (u  I , u 2 ..... uj+ l) dua+ 1 "'" du2 dul  d J  (2.1) 

For the three-dimensional case (2.1) has been simplified by Muche, ~9~ using 
a Cartesian coordinate system (~, 1 l, if) in such a way that the unit vectors 
have the coordinates 

Ill : ( ~ 1 '  --t11" (~1)' 1"12:---'(~1"I71"(I) 

U3=(~1,113,(~3), /'14 : (~4,  r]4, ~4) 

with ~4~<~, I1~ >/0, and ~, ~<~3. Let u~ ( i=  1, 2, 3, 4) be the projection of 
ui onto the (q, ~) plane. Let ~L and ~2 be the angles u'~ ou[ and u'ou~;/~ the 
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angle spanned by u~, o, and the positive ( axis; y the angle spanned by the 
negative ( axis, o, and u~; and, finally, h = ( ~ - ( 4  the height of the 
tetrahedron. Then (2.1) takes the simpler form 

140 3 ~ ~ i+cosp _ 2~-~, _ 

Io  olo 
O<0 

~l sin ~ sin d?~ d~ 2 d~ 1 d~ d~ dl~ xh  sins fl sin~- 

(2.2) 

The structure of the integrand allows a separation of Fo(O) into factors, 
namely 

Fo(O) = f~(6) d6 fe, u(fl, h) dh dfl 

0 < 0  0 < 0  

0 < 0  0 < 0  

with {9) 

32~3)'3 68 exp ( -- -~-~ ~3) 0~<6<00 
fa(6) = --------~ 

105 
fB, n(fl, h)=-6~hsinS fl, O~<h<l  +cosf l ,  O~<fl<lt 

. ~, + ~2"~ z 16 ~' ~' sm - - -~-- - )  f,,.A.~(ct,, ~z)=~-,_ sin'~'-sin 2 

0-~ct2 < 2 ~ - ~ 1 ,  0 ~<~, <2~z 

and 

1 
f r (y )  = ~-~, 0~<y<2x  

The behavior of size and shape of the three-dimensional Poisson Delaunay 
cell D is completely described by formulas (2.2) and (2.3). 
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3. RESULTS 

This section summarizes integral expressions for probability density 
functions f e (O) ,  formulas for the kth-order moment, k = 0 ,  I, 2 ..... the 
variance var 0 = E( 0 - E O  ) 2, the skewness skw 0 = E( 0 - E O  ) 3/( var O) 3/2, 
and the excess e x c O = E ( O - E O ) a / ( v a r  0 ) 2 - 3  for several geometrical 
characteristics O of the three-dimensional Poisson Delaunay cell. The 
abbreviation 

g(~], c(2)= sin(~l/2) sin(~2/2) sin[(~l + ~2)/2 ] 

is used in the probability density functions. 
Numerical values are summarized in Table I. 
The probability density functions are plotted in Figs. 1-4. 

Table I. Properties of Geometrical Characteristics of the Three-Dimensional 
Delaunay Cell to a Generating Poisson Process of Unit Intensity" 

0 E O  E O  2 E O  3 E O  4 

V 0.1477600595 0.0371983367 0.0134741017 0.0064177669 

R 0.3039813467 0.1001274593 0.0352751158 0.0131649871 

S 0.5972864450 0.4675444061 0.4444664589 0.4913927123 

P 3.7111010836 14.6399982926 60.8389538054 264.5488393183 

L 1.2370336945 1.7155937900 2.5850244273 4.1559502764 

A 1.0471975512 1.2699340668 1 . 7 1 3 6 3 9 5 6 0 1  2.5115877519 

0 var 0 sd 0 skw 0 exc 0 

V 0.0153653015 0.1239568533 1.8045024895 5.0345713432 

R 0.0077228001 0.0878794636 0.2107951308 -0.1382798960 

S 0.1107933987 0.3328562883 0.8909815462 0.9482501001 

P 0.8677270400 0.9315186740 0.0841202890 -0.1304754550 

L 0.1853414286 0.4305129831 0.0530118838 -0.3324898903 

A 0.1733113556 0.4163068047 0.2880812204 -0.2833923139 

The parameter O stands for the cell volume V, the equivalent radius R of V, the area of a 
face S, the perimeter of a face P, the length of an edge L,  and the angle inside of a face A 
(sd = standard deviation). 



152 Muche 
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Fig. 1. The probability density function of the volume of the three-dimensional Poisson 
Delaunay cell (1) and that of the equivalent radius of volume (2). The intensity of the 
generating Poisson process is 1. 
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Fig. 2. The probability density function of the area of a face of the three-dimensional 
Poisson Delaunay cell. The intensity of the generating Poisson process is 1. 
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Fig. 3. The probability density function of the perimeter of a face of the three-dimensional 
Poisson Delaunay cell. The intensity of the generating Poisson process is 1. 

Fig. 4. 
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The probability density functions of the length of an edge of the three-dinaensional 
Poisson Delaunay cell. The intensity of the generating Poisson process is I. 
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3.1. The V o l u m e  V 

The results given in this section are based on formulas (2.2) and (2.'-) 
First consider the volume of the Poisson Delaunay cel D of ~ in R 3. It 
given by ~. area of lower surface, height, which means substituting the 

2 3 volume O = V and v = 36 g ( ~ ,  ~_,)h sin 2 fl in (2.3). Transposition to 6 girt :, 

with the derivative 

3v ,) 1/3 

6 = 2g(~l, 0~2)h sin-" flJ 

Oa_ 1 (" 3 )./3 

Ov 3 \2g(~, ,  ~,_)h sin 2 f l .v2 j  

Simplification and differentiation of (2.3) with respect to v gives 

"o g(~,, ~2) h2 sin fl 

( 27r2v fi) dhdfld~,d~, • exp - g ( 0 q ,  0t2)h sin 2 

The integration with respect to h by use of the substitution h = I/t leads to 
the probability density function of the volume of the three-dimensional 
Delaunay cell D 

fv(v)  = 2 o f o Yo vsinfl 

(g  --21r2v )dfldot, doq, v~>O (3.1) 
xexp (~,, ~2)(1 + c o s  fl) sin2fl 

Note that the slope offv(v) at v = 0 is finite; the derivative takes the value 
dfv(v)/dv = 70(~2) 2. The kth moment of V is well known [cf. Miles, ~31 for- 
mula (77), for the special case d =  3, or Moiler, 141 formula (7.35)] 

EVk= 35 ~ ( k +  1)! (k + 2)! (2k +4)!  (3.2) 
256{ F(k/2 + 2)} 3 F((3k + 9)/2)(16~2) k 

Variance, skewness, and excess are given by 

var V= 
30240~ 2 - 175175 1 (12250/864 -96~2/143) 

skw V - - -  
82368~422 20x/~-- 6 (3~2/143-35/288)3/2 

6 2303976960n 4+323323(55296~ 2-875875)  
exc V = - -  

11305 (864~ 2 -- 5005) 2 
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fla,: equivalent radius R is connected with the volume by V=~nR 3. 
Therefore the substitution v = xnr- in (3.1) leads to the probability density 

�9 r ; �9 

!a.nction of R, 

fR(r) =-~--(n2) z r s sin/? 

--Sn'-~'r3 ) d#da 2 doq, 
xexp 3g(0q, 0t_,)(l +cos,B) sin~-fl 

r>~O 

For the determination of the moments, the order of integrations can be 
changed. Now we use the well-known integral formulas 

s 
O<a,b,c < ~ (3.3) 

and 

Io n/2 sirt2a + 1 X COS 2b+ I X d x  ~- 
~ a + l  F ( b + l )  

2 ~ a + b + 2 ) '  

-oo <a ,b< +oo (3.4) 

This gives 

8rg 2 (2• j . )  k ( 1 + cos fl)k + z sin2k + 5 fl 

x { g(0tt, ~z)} ~ +2 dfl dot 2 dal 

and use of (3.2) leads to 

fo f2 '~-~' rcs/zF(3c + 2) 
"" { g ( c q , o ~ , ) } " d ~ 2 & , = 2 6 , . r ( ( 3 c + 3 ) / 2 ) { r ( c / 2 + l ) } 3  (3.53 

for real c~>0. Use of (3.5) finally leads to a kth-moment formula for the 
equivalent radius 

35.3k/3F(k/3 +2 )  F(k/3 + 3) F(2k/3 +5)  ER k 
- 2 2. + ~ / ~ -  '/'-{ r ( k /6  + 2)} ~ r((~: + 9)/2/2 k/3 
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with 

125 [ 91 {V(~)}-" 605~:{v(])}-'] 
v a r R -  

--(3g}~2) 1/3 [ 174-96--~{F7~}-" ~ - ~ - ~ 3  {F(g)} ] 

skw R=5{7.343/ '-{F(4)} 3 {/'(7)} 9 

+ 440000r?~/-" [ 605~ { F( 4)} 6 _ 2457{ F( 7)} 6]} 

x { x/~ re[ 24877125 { F({)} 2 { ,r't 7 , 1  6 / g l l .  - -  605000re31 f'(4)} a] s/2 } .  - '  

exc R = { [ 1233792{ F( ~)}6 _ 2640625{ F( {)} 6] 

x 3tg.49{_F(71} , 2 _ 8 .  (11) 4 (10z~) 8 {f'(4)}6 

+ 6342336( 10rt )7 {/-.( ~)}6 _ 779625. 187(3rc) s/'- { F( 4)}3 { F( ~,)} 9} 

x{[ l125F(~) ] [37 .91{F(7)} .  6{F(~)}_, 4840rc3{F(~)}4 4]s~-2 

3.2. The Area  S of  a Face 

The behavior of the area of a face can be investigated by use of (2.3). 
Putting O = S and using the probability density function 

i 
I + co~/~ 105 - 

./A(fl) = ./R.,,(fl, h ) d h = - i ~ s i n " f l ( l  + cos fl)-', 

gives the distribution function of the face area in the form 

F.s.(s) = J'Ij'J'J:4,.A_,(~ ~ , ~-,)J~,(fl).l~(a) do~ 2 d~x, dfl dd 
.'~' .< a" 

Because of s = 2 ( d  sin f l j Z g ( o :  I , ~'2), the substitution d = [s/g(~ l , 0~2)/2 ] I/2/ 
sin fl, simplification, and differentiation with respect to s lead to the prob- 
ability density function of the area of a face 

35rg). 3 ~2, 2n :q n $7/2(1 -k-cos fl)2 

f s ' [ s ) = 7 2 v / 2 J o  Io Io {g(~x,,a2)}s'/2sin4fl 

- v /2 7z2s 3/'- 
x exP (a{ g(oq, ~2)} S/2 sinS fl) dfl d~ d~'" s~>0 
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The moments  are obtained by use of (3.3)-(3.5) 

35.32k/S(k +4 )  F(2k/3 + 3) F(k + 3) F(3k/2 + 4) 
ES ~ _ 2 ' ok/3 + 9~2k/3 -- 1/2 { i~(k/2 + 2) } 3 F(k + 9/2) 2-'k/s 

175 [ F ( 4 / 3 ) 4 3 7 5  { F(5/3)}-'] 
var S - 2(61r 22, _)z/3 11 5832rr-' 

skw S - 2 . , / ~ (  22.3'-'n-" - 5- 104. 39/2n3 + 5977 / F( 5/3 )}3 ) 
125(183n-'F(4/3) - 77.54{/'(5/3)} 2)3/,_ 

exc S =  { [(8rr) 2 - 1365]. 3"(44~) 2 F(.~) 

+ [(12~) 3 x/~ - 77.54{ F(~-)} 3] 

x 6006-56F(5) - 186' 975~4{ F(})} 2} 

x { 325[ 183n2F(4) _ 77.54{ F( .~)} 2] 2} - ,  

3.3.  T h e  P e r i m e t e r  P o f  a F a c e  

Analogously, use of O = P and 

& = p 2 sin fl sin T + sin 2 + sin 

leads to the probability density function of the perimeter of a face 

35rc23 f2~ 2~-~, ~ pS{g(0~ l, 0c2)} 2 (1 +cosfl)- '  
J e(P)=~----~'9 Jo fo fo sin'fl(sin(~,--/2-)+s---in(e-~_,72-)+sin[(a----~ +e2) /2])  9 

x exp 6 sin s fl(sin(~ l/2) + sin(~_,/2) + sin[(oq + ~2)/2])3 

x dfl dot2 do q,  p > O  

Use of (3.3), (3.4), and a sequence of lengthy but elementary integrations 
with respect to ct~ and ~2 leads to the further expressions 

(4)(6),,-, 
3200( '128 3 )  F ( 5 ~ ( 6 ~ 2 / 3  

EP2= 81 \ 7 - ~  -'+ \ 3 J \ ~ 2 J  

12525975 71680 / 435 8192 "~ [4~{  6 ~4/s 
E p 3 =  2'6rc2 E p 4 -  891 ( , 1 - ~ + 7 3 - - ~  2) r \ g j \ ~ j  
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J'(16384+900n2"~ {'5"~ [1715F(4)]2~{ 6 )2/3 
v a r e =  [k 2437E2 J /" k3J-  h ~ \3,,/J J \ ~ J  

skw P = 210n2{ 3645 v/3 n[ 12215808 + 5.78{ F(4)} 3] 

- 2-"49[ 212 + ( 15n)-' ] } 

x {2-'0[2 ,2 + (15n)-'] F( .{)-  175. 215n-'{ V(4)} 2} -3/2 

exc P = ~6 {567.302 . 11 , /5 ,? r (~) [2 ' - "  + { 15n)-'] 

- 2 ' J �9 945 -~. 1 1 1 7 9 6 2 2 4 1 7 n 4 F ( . ~ )  

+ 259(9n} 2 F(4) _ 99.7 '3145nF( 4)]4 

-239.7712 '2+(15n)2]  2 {F(~)} -~} 

x { 2-'0[212 + (15n)-'] F( 5 --~ :~)- 1 7 5 . 2  %-'{ v( I)}-'} 

3.4. The Length L of an Edge 

Consider the length L of an edge of D. For the determination of its 
probability density function consider the central angles At and A2 occurr- 
ing in (2.3). The edge length and one of these angles are connected by 
l =  6 sin(ot~/2). Therefore knowledge of the probability density function 

is needed, namely 

fA,(O~l )=  JA,.A2(~. a_') doe2 

1 
. lA, (aJ  ) = ~-5~_, [ ( 2  + cos ~, ) ( 2 n  - -  ~ l )  + 3 sin cx I ]( 1 - -  c o s  ~x I ) 

0~<~ < 2 n  

Now the distribution function F L ( / )  is given by 

. [ I . [  J~, , (~,  ) fB(,6).fj(a) d~, d~ Fc(I) d6 
L < l  

Substituting 6 = I/[2 sin(~x~/2)] and taking into account that 

- 2 n  - 0 {  1 If~(2n-o~,)sin"~d~,=[o oqsin"~_ doq=nff~sin"~d~t 

(3.6) 
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for real c leads to the probability density function of the length of an edge 
of D, 

35~223 t,,~/2 ~/2 18(2_ sin 2 fl)(3 --2 sin 2 cp) 
f L ( l ) = ~  Jo "o sin----4-fi~-n~-q~ 

( ,m-' )d,/,dB, 1> 0 • exp 6 sin 3 fl sin 3 q~ 

The moments are obtained by use of (3.3) and (3.4), 

EL k 35 ( k + 8 ) ( k + 6 )  ( + k ~ f  6 ,~k/3 
=3-~(k+7) (k+5) (k+3) l "  3 ~ ) \ - ~ )  

v a r L = ~ ( ~ F  5 7 6  
\ 3 ] J  J\rt2] 

skw L = 126 {2,73611 + 3-5378{/-(4)}3 _ 22L5372zt/35/~_ } 
125 

x [ 2 ' - ~  - 9.76{/,(4)} 2] -3/2 

exc L = [220 �9 7 v/3 /'( 4)(1078 . 703~z - 183827583 x/~) 

- 24~ { F(~)} z - 668250.7'-'{ F(4)} 4] 

x { 137512"-~ 2]2} - ,  

3.5. The Angle A in a Face Spanned by Two of Its Edges 

Finally, (3.6) and A l =  2A, central angh, = 2. angh, at circumference, 
lead immediately to the probability density function of the angle spanned 
in a face by two of its edges. The moments are obtained by integration by 
parts and (3.4), 

f .d ~ = ~5~_, [2(~ -00(2  +cos  2~) + 3 sin 2~] sin-' a, O ~ < n  

with 

x x 2 3 
E A t  = - E A  2 . . . .  v a r  A . . . .  

3' 6 8' 
n-~ 3 
18 8 



160 Muche 

These results were already given by Kumar and Kurtz. ~2) The further 
expressions are 

1 6 z d -  60ze-" - 105 32rc 4 -  180re 2 -  135 
E A  3 = E A  4 ~ .  

160rr ' 480 

skw A = 
n3/135 - 21/32n 
(n2/18 -3 /8)  3/2' 

3 1485 - 16~ 4 
exc A = -  

5 (4~ 2 - 2 7 )  2 

4. THE LOWER D I M E N S I O N A L  CASES 

The method given here can be used in the same manner for the one- 
and two-dimensional Delaunay tessellations. 

4.1. The One-Dimensional  Delaunay Cell 

In the case d=  I, (2.1) takes the very easy form 

Fo(O)  = 22 exp(-22fi )dO 

O < 0  

which means that one-dimensional Delaunay cells are simply segments 
with a random length (one-dimensional volume) V. Substituting O = V and 
v = 26 gives the probability density function 

with 

f v ( v )  = 2 exp( -2v) ,  v>~0 

E V  k = F ( k  + 1 ) 

and var V= 1/22, skw V= 2, and exc V= 6. These results are well known. 

4.2. The Two-D imens iona l  Delaunay Cell 

In the case d =  2 the cells of ~ are planar triangles having the radius 
d of the circumcircle and the central angles A~, A2, and 2 n - A , - - A 2  (see 
Table IlL Then Miles' formula (2.1) can be written as 
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4 7 ~ 2 f  oz _ 2 n -  ~l Fo(O)----g-3off"fo 63 exp (  - -  ,,l, zcc~2) 

0 < 0  

0~1 _ _  ~ 1  q ' -  0~,~ . 
x sin ~ sm ~ s i n  ~ dO~ 2 dolt d6 (4.1) 

Let V denote the area (two-dimensional volume) of D of Z~. Using again 

g(oq, ~2) = sin(~l/2) sin(~2/2) sin[(oq + ~2)/2] 

the connection between the triangle area, the radius of the cii'cumcircle, 
and the central angles is v =262g(et,  ct2). Connected with (4.1), this gives 
immediately the probability density function of the area V of D of ~ for 
d = 2 (see Fig. 5), 

fv(v) = g )?v g(0q, o~2) 
( -2nv  "~d~,dCtl 

exp \2g(oq, ~2)J - ' v~>O 

Use of (3.3) and (3.5) leads to 

EVk F(k/2+ 1) F((3k+5)/2) 
3.2kn k- I/2{ l'((k + 3)/2)} 2 2k 

35 - 27~ 2 
var V = - -  8~'2/~ 2 

21/27t(47Z 2 -  15) 
skw V -  (35 - 2~z2) 3/z 

exc V -  
2331 + 120n2-- 24rc 4 

( 3 5  - -  27~2) 2 

Substituting v = nr'-, we immediately obtain the expression for the equiv- 
alent radius R (a circle having an area equivalent to the area of D), 

zc 3 I ~ I ~ - ~  1 ( -2zt2r2 "~ 
fR(r) = -~- ,;!.2r 3 exp de, de1, 

g(~1,~2) \2g(~1,~2)/  - 
r~>O 

822/84/I-2-11 
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Table II. Properties of Geometrical Characteristics of the Two-Dimensional 
Delaunay Cell to a Generating Poisson Process of Unit Intensity" 

0 EO E O  2 E O  3 E O  4 

V 0 .5000000000  0 . 4 4 3 2 8 0 1 7 8 4  0 . 5 6 9 9 3 1 6 5 8 0  0.9633982722 
R 0 .3637754544  0 . 1 5 9 1 5 4 9 4 3 1  0 . 0 7 9 9 9 9 8 1 9 0  0.0449136724 
P 3 .3953054526  13.2629119243 57.9388014224 277.7416286004 
L 1 .1317684842  1 . 5 9 1 5 4 9 4 3 0 9  2 . 5 9 3 8 2 2 3 0 1 2  4.7283219033 
A 1 .0471975512  1 .3599120891  2 . 0 2 6 1 2 0 1 2 6 4  3.3284062697 

0 var 0 sd 0 skw 0 exc 0 

V 0 .1932801784  0 . 4 3 9 6 3 6 4 1 6 2  1 . 8 2 4 2 4 2 7 7 4 5  5.0561445543 
R 0 .0268223618  0 . 1 6 3 7 7 5 3 3 9 6  0 . 5 8 9 2 5 9 5 0 2 0  0.2502552768 
P 1 .7348128077  1 .3171229281  0 . 4 9 3 1 0 4 7 4 8 9  0.1724363860 
L 0 .3106495291  0 . 5 5 7 3 5 9 4 2 5 4  0 . 5 1 6 2 7 7 8 2 9 7  0.0618276348 
A 0 .2632893779  0 . 5 1 3 1 1 7 3 1 4 0  0 .3744793156  -0.3812822265 

The parameter O stands for the cell area V, the equivalent radius R of V, the perimeter of a 
cell P, the length of an edge L, and the angle spanned by two edges of a cell A (sd = standard 
deviation). 

2 . 0  

2 

1 . 5  

1 . 0  

0 . 5  

0 . 0 .  ~ : ~ I 
0 . 0  0 . 5  1 . 0  1 . 5  2 . 0  

Fig. 5. The probability density function of the area of the two-dimensional Poisson 
Delaunay cell (1) and that of the equivalent radius of area (2). The intensity of the generating 
Poisson process is 1. 
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0 . 6  

o.. / 1  

0 . 4  

0 . 3  

0 . 2  

0 . 1  

0 . 0  
O .1L 2 3 4 5 6 "7 8 

Fig. 6. The probability density function of the length of an edge (I)  and the perimeter of a 
cell of the two-dimensional Poisson Delaunay tessellation. The intensity of the generating 
Poisson process is 1. 

Use of (3.3) and (3.5) gives 

ERk_ F((k +4)/4) F ( ( 3 k +  10)/4) 
3.2k/'-n k-  1/2{/"((k + 6)/4)} 2 2k/,_ 

_ - 

1 
s k w  R - 2 ' 9 5 4 { / ( 5 ) }  ,6 _ 212675rc4{ F(5)} 8 + 3,77rc7 

295{ / - ' (5 )}  4 ( 9 g  4 - -  1600{ F(5)} 8)3/2 

exc R = [ 34rc6(280- 231rc-  48rC) 

+ 2t2675n:4{/-,(~)} 8 _2,73.54{/-,(45_)} ,6] 

x {24197~ 4 -  1600{/ ' (45- )}8]  2} - '  

For the perimeter of a cell, substituting O = P and 

p = 2~  sin ~- + sin 2 + sin 

822/'84/I-2-11" 
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we obta in  for the probabi l i ty  density function of the cell per imeter  (see 
Fig. 6) 

zr )L2p3 ff" ff'~-~<l g(ocl, 0C2) 
fP (P )  = ~ [ s in(~l /2)  + sin(oc2/2) + sin[ (al + ~,)/2 ] ]4 

- )<rip,_ ) 
x exp 4[ s in(~l/2)  + sin(~_,/2) + sin[(c~l + ~2)/2] ]2 

X d~.2 doll , p > ~ 0  

and (3.3) leads to 

E p  k = 2k+,r,2+ j2,fo 3rt , /2  + IJk/2 g(0Cl ' 0~2) 

x sin ~ + s i n  2 + s i n  d % d e i  

In part icular ,  the results are 

32 125 
E p  I _ E p  z _ 

3~2 l/~' 3n2 

225rt + 9216 13706 E p  3 - E p  4 = 
20~_,) 3/2 , 5~2) 2 

var  P = 375n - 32-' 
9~22 

6075~ 3 -- 471168~ + 1310720 
skw P -  

20(3751t - 32-" )3/2 

-- 3(64800~z 3 + 333063~ 2 -- 5025792~ + 10485760) 
exc P --- 

5(375rt - 322) 2 

An already well-known result is the probabi l i ty  density functionJ~.(/)  of  the 
length of  an edge of  a De launay  celU ll~ 

[--2zrl2X~ 2 "~ 2 ~'~ d x ) ,  fL(l) = ~ (v/c2 lexp t ~ )  + 7 ) + 7  Jl:o-"/l'~-/2/' exp(-x") 
/ 

11>0 
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Substituting O = L and without loss of generality 1= 2~ s in(~/2) ,  this can 
be derived from (2.1). The further results are 

2~+ }(k + 1)(k + 3 )  F ( ( k +  1)/2) 
E L  k _ 

3(k + 2) n c* + 1}/22t/2 

L = 405n - 322 32( 10240 - 3159n) 
var skw L -  

8 In22 5(405n - -  3 2 2 )  3/2 

- 3(309825n 2 - 4313088n + 10485760) 
exc L - 

5(405n - 322) 2 

Analogous to that of the angle A in the three-dimensional case, the well- 
known probability density function fn(ct) of the angle A in a cell spanned 
by two of its edges can be given, namely 

4 
"fA(a) = ~nn sin ct[ sin oc + (n - or) cos ~], 0 ~ < n  

with 

n 4n 2 -  15 
E A  = - E A  2 _ _ _  

3'  18 

rt 3 4/z 4 - -40n 2 + 105 
E A 3 = - 6  - n '  E A 4 -  30 

n 2 5 4n(n2--  9) 
var A . . . .  skw A - 

9 6'  (4n 2 - -  3 0 )  3/2 

3( 765 - 87~ 4 )  
exc A - 

5(2n 2 -  15) 

5. D I S C U S S I O N  

The present paper gives an exact analytical description of the behavior 
of geometrical characteristics of the three-dimensional Delaunay tessellation 
generated by a stationary Poisson point process. The results are based on a 
general formula given by Miles; t~} they are obtained by a unified method. 

The characteristics investigated here are of great interest in several fields 
of physics, as evidenced by the fact that many authors have studied them 
intensively by means of simulation. The special case that the generating 
point process is Poisson has been summarized in Kumar  and KurtzJ 2~ The 
probability density function of 2A, the double of the angle inside of a face, 
also has been studied by Lorz t}2~ and van de Weygaert ~3~ by simulation. 
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In contrast to the multiplicity of the simulation studies, analytical 
results concerning the Delaunay tessellation are given only in a few papers. 
These are, for example, Miles, ~31 with the important formulas describing 
the size and shape of the Poisson Delaunay cell of an arbitrary dimension, 
and Moller, 141 who partly obtained Miles' results in another way. Mean 
values for the three-dimensional Poisson Delaunay cell are given by Okabe 
et al. ~j~ Analytical expressions for the probability density functions of the 
angle A in a face are given by Kumar and Kurtz. t2~ Rathie ~8~ has given an 
analytical expression for the probability density function of the volume V 
of the three-dimensional Poisson Delaunay cell. 

In the present paper, probability density functions have been given for 
the volume of the three-dimensional Poisson Delaunay cell, for the area 
and the perimeter of a face, for the edge length, and for an angle inside of 
a face. These probability density functions are in general threefold integral 
formulas. The elegant expression given by Rathie ~8) is a sequence of com- 
plicated analytical standard functions, whereas the integral formulas given 
in the present paper are more suitable for a numerical evaluation of the 
probability density functions. 

Analytical expressions for higher moments of the equivalent radius R, 
the area S, and the perimeter P of a face have been given for the first time. 
A short summary has been given for the one- and two-dimensional cases. 
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